Abstract

Since 3D sensors became popular, imaged depth data are easier to obtain in the consumer sector. In applications such as defect localization on industrial objects or mass/volume estimation, precise depth data is important and, thus, benefits from the usage of multiple information sources. However, a combination of RGB images and depth images can not only improve our understanding of objects, capacitating one to gain more information about objects but also enhance data quality. Combining different camera systems using data fusion can enable higher quality data since disadvantages can be compensated. Data fusion itself consists of data preparation and data registration. A challenge in data fusion is the different resolutions of sensors. Therefore, up- and downsampling algorithms are needed. This paper compares multiple up- and downsampling methods, such as different direct interpolation methods, joint bilateral upsampling (JBU), and Markov random fields (MRFs), in terms of their potential to create RGB-D images and improve the quality of depth information. In contrast to the literature in which imaging systems are adjusted to acquire the data of the same section simultaneously, the laboratory setup in this study was based on conveyor-based optical sorting processes, and therefore, the data were acquired at different time periods and different spatial locations. Data assignment and data cropping were necessary. In order to evaluate the results, root mean square error (RMSE), signal-to-noise ratio (SNR), correlation (CORR), universal quality index (UQI), and the contour offset are monitored. With JBU outperforming the other upsampling methods, achieving a meanRMSE = 25.22, mean SNR = 32.80, mean CORR = 0.99, and mean UQI = 0.97.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call