Abstract

The Internet of Things (IoT) is set to become one of the key technological developments of our times provided we are able to realize its full potential. The number of objects connected to IoT is expected to reach 50 billion by 2020 due to the massive influx of diverse objects emerging progressively. IoT, hence, is expected to be a major producer of big data. Sharing and collaboration of data and other resources would be the key for enabling sustainable ubiquitous environments, such as smart cities and societies. A timely fusion and analysis of big data, acquired from IoT and other sources, to enable highly efficient, reliable, and accurate decision making and management of ubiquitous environments would be a grand future challenge. Computational intelligence would play a key role in this challenge. A number of surveys exist on data fusion. However, these are mainly focused on specific application areas or classifications. The aim of this paper is to review literature on data fusion for IoT with a particular focus on mathematical methods (including probabilistic methods, artificial intelligence, and theory of belief) and specific IoT environments (distributed, heterogeneous, nonlinear, and object tracking environments). The opportunities and challenges for each of the mathematical methods and environments are given. Future developments, including emerging areas that would intrinsically benefit from data fusion and IoT, autonomous vehicles, deep learning for data fusion, and smart cities, are discussed.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call