Abstract
Three feature extraction methods are considered for neural network classifiers. The first two feature extraction methods are based on the wavelet and the translation-invariant wavelet transformations. The feature extraction is in these cases based on the fact that the wavelet transformation transforms a signal from the time domain to the scale-frequency domain and is computed at levels with different time/scale-frequency resolution. The third feature extraction method is based on tree structured multirated filter banks but the tree structured filter banks can be tailored for multisource remote sensing and geographic data. In experiments, the proposed feature extraction methods performed well in neural networks classifications of multisource remote sensing and geographic data.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.