Abstract

<div>Abstract<p><b>Background:</b> The targeted delivery of bioactive molecules with antibodies specific to tumor-associated antigens represents a promising strategy for improving the efficacy of tumor therapy. The large isoform of tenascin-C, an abundant glycoprotein of the tumor extracellular matrix, is strongly overexpressed in adult tissue undergoing tissue remodeling, including wound healing and neoplasia, and has been implicated in a variety of different cancers while being virtually undetectable in most normal adult tissues.</p><p><b>Experimental Design:</b> We have used antibody phage technology to generate good-quality human recombinant antibodies (F16 and P12) specific to the alternatively spliced domains A1 and D of the large isoform of tenascin-C. The tumor-targeting properties of F16 and P12 were assessed by biodistribution studies in tumor xenografts using the antibodies in small immunoprotein (SIP) format.</p><p><b>Results:</b> SIP(F16) selectively accumulated at the tumor site with 4.5%ID/g at 24 hours in the U87 glioblastoma model but was rapidly cleared from other organs (tumor-to-organ ratios, ∼10:1). The accumulation of SIP(P12) in the tumor was lower compared with SIP(F16) and persistent levels of radioactivity were observed in the intestine.</p><p><b>Conclusions:</b> These data suggest that the F16 antibody, specific to domain A1 of tenascin-C, is a promising building block for the development of antibody-based pharmaceuticals in view of its excellent tumor-targeting performance and the strong expression of the antigen in a variety of primary and metastatic tumors.</p></div>

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call