Abstract
<div>Abstract<p>Esophageal adenocarcinomas are associated with a dismal prognosis. Deciphering the evolutionary history of this disease may shed light on therapeutically tractable targets and reveal dynamic mutational processes during the disease course and following neoadjuvant chemotherapy (NAC). We exome sequenced 40 tumor regions from 8 patients with operable esophageal adenocarcinomas, before and after platinum-containing NAC. This revealed the evolutionary genomic landscape of esophageal adenocarcinomas with the presence of heterogeneous driver mutations, parallel evolution, early genome-doubling events, and an association between high intratumor heterogeneity and poor response to NAC. Multiregion sequencing demonstrated a significant reduction in thymine to guanine mutations within a CpTpT context when comparing early and late mutational processes and the presence of a platinum signature with enrichment of cytosine to adenine mutations within a CpC context following NAC. Esophageal adenocarcinomas are characterized by early chromosomal instability leading to amplifications containing targetable oncogenes persisting through chemotherapy, providing a rationale for future therapeutic approaches.</p><p><b>Significance:</b> This work illustrates dynamic mutational processes occurring during esophageal adenocarcinoma evolution and following selective pressures of platinum exposure, emphasizing the iatrogenic impact of therapy on cancer evolution. Identification of amplifications encoding targetable oncogenes maintained through NAC suggests the presence of stable vulnerabilities, unimpeded by cytotoxics, suitable for therapeutic intervention. <i>Cancer Discov; 5(8); 821–31. ©2015 AACR</i>.</p><p><i>See related commentary by Devarakonda and Govindan, p. 796</i>.</p><p>This article is highlighted in the In This Issue feature, p. 783</p></div>
Published Version (Free)
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.