Abstract

<div>Abstract<p>Resistance to BRAF inhibitors is a major clinical problem. Here, we evaluate BI-847325, an ATP-competitive inhibitor of MEK and Aurora kinases, in treatment-naïve and drug-resistant <i>BRAF</i>-mutant melanoma models. BI-847325 potently inhibited growth and survival of melanoma cell lines that were both BRAF inhibitor naïve and resistant in 2D culture, 3D cell culture conditions, and in colony formation assays. Western blot studies showed BI-847325 to reduce expression of phospho-ERK and phospho-histone 3 in multiple models of vemurafenib resistance. Mechanistically, BI-847325 decreased the expression of MEK and Mcl-1 while increasing the expression of the proapoptotic protein BIM. Strong suppression of MEK expression was observed after 48 hours of treatment, with no recovery following >72 hours of washout. siRNA-mediated knockdown of Mcl-1 enhanced the effects of BI-847325, whereas Mcl-1 overexpression reversed this in both 2D cell culture and 3D spheroid melanoma models. <i>In vivo</i>, once weekly BI-847325 (70 mg/kg) led to durable regression of <i>BRAF</i>-inhibitor naïve xenografts with no regrowth seen (>65 days of treatment). In contrast, treatment with the vemurafenib analog PLX4720 was associated with tumor relapse at >30 days. BI-847325 also suppressed the long-term growth of xenografts with acquired PLX4720 resistance. Analysis of tumor samples revealed BI-847325 to induce apoptosis associated with suppression of phospho-ERK, total MEK, phospho-Histone3, and Mcl-1 expression. Our studies indicate that BI-847325 is effective in overcoming BRAF inhibitor resistance and has long-term inhibitory effects upon <i>BRAF</i>-mutant melanoma <i>in vivo</i>, through a mechanism associated with the decreased expression of both MEK and Mcl-1. <i>Mol Cancer Ther; 14(6); 1354–64. ©2015 AACR</i>.</p></div>

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call