Abstract

<div>Abstract<p>Pancreatic ductal adenocarcinoma (PDAC) is a highly lethal cancer due in part to a lack of highly robust cytotoxic or molecular-based therapies. Recent studies investigating ligand-mediated Wnt/β-catenin signaling have highlighted its importance in pancreatic cancer initiation and progression, as well as its potential as a therapeutic target in PDAC. The small-molecule ICG-001 binds cAMP-responsive element binding (CREB)-binding protein (CBP) to disrupt its interaction with β-catenin and inhibit CBP function as a coactivator of Wnt/β-catenin–mediated transcription. Given its ability to inhibit Wnt/β-catenin–mediated transcription <i>in vitro</i> and <i>in vivo</i>, as well as its efficacy in preclinical models of colorectal cancer and other Wnt-driven diseases, we examined ICG-001 and its potential role as a therapeutic in PDAC. ICG-001 alone significantly inhibited anchorage-dependent and -independent growth of multiple PDAC lines, and augmented <i>in vitro</i> growth inhibition when used in combination with gemcitabine. ICG-001 had only variable modest effects on PDAC apoptosis and instead mediated PDAC growth inhibition primarily through robust induction of G<sub>1</sub> cell-cycle arrest. These effects, however, seemed decoupled from its inhibition of Wnt/β-catenin–mediated transcription. DNA microarrays performed on PDAC cells in the context of ICG-001 treatment revealed ICG-001 altered the expression of several genes with well-established roles in DNA replication and cell-cycle progression, including direct actions on <i>SKP2</i> and <i>CDKN1A</i>. ICG-001 also significantly prolonged survival in an <i>in vivo</i> orthotopic xenograft model of PDAC, indicating ICG-001 or derived compounds that disrupt CBP activity are potentially useful small-molecule therapeutics for pancreatic cancer. <i>Mol Cancer Ther; 13(10); 2303–14. ©2014 AACR</i>.</p></div>

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.