Abstract

<div>Abstract<p>Conventional chemotherapy targets proliferating cancer cells, but most cells in solid tumors are not in a proliferative state. Thus, strategies to enable conventional chemotherapy to target noncycling cells may greatly increase tumor responsiveness. In this study, we used a 3-dimensional tissue culture system to assay diffusible factors that can limit proliferation in the context of the tumor microenvironment, with the goal of identifying targets to heighten proliferative capacity in this setting. We found that supraphysiologic levels of insulin or insulin-like growth factor I (IGF-I) in combination with oxygen supplementation were sufficient to initiate proliferation of quiescence cells in this system. At maximal induction with IGF-I, net tissue proliferation increased 3- to 4-fold in the system such that chemotherapy could trigger a 3- to 6-fold increase in cytotoxicity, compared with control conditions. These effects were confirmed <i>in vivo</i> in colon cancer xenograft models with demonstrations that IGF-I receptor stimulation was sufficient to generate a 45% increase in tumor cell proliferation, along with a 25% to 50% increase in chemotherapy-induced tumor growth delay. Although oxygen was a dominant factor limiting <i>in vitro</i> tumor cell proliferation, we found that oxygen supplementation via pure oxygen breathing at 1 or 2 atmospheres pressure (mimicking hyperbaric therapy) did not decrease hypoxia in the tumor xenograft mouse model and was insufficient to increase tumor proliferation. Thus, our findings pointed to IGF-I receptor stimulation as a rational strategy to successfully increase tumor responsiveness to cytotoxic chemotherapy. <i>Cancer Res; 72(3); 801–9. ©2011 AACR</i>.</p></div>

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.