Abstract

<div>Abstract<p><b>Purpose:</b> Here, we describe a novel interplay between NAD synthesis and degradation involved in pancreatic tumor growth.</p><p><b>Experimental Design:</b> We used human pancreatic cancer cells, both <i>in vitro</i> (cell culture experiments) and <i>in vivo</i> (xenograft experiments), to demonstrate the role of NAD synthesis and degradation in tumor cell metabolism and growth.</p><p><b>Results:</b> We demonstrated that pharmacologic and genetic targeting of Nampt, the key enzyme in the NAD salvage synthesis pathway, inhibits cell growth and survival of pancreatic cancer cells. These changes were accompanied by a reduction of NAD levels, glycolytic flux, lactate production, mitochondrial function, and levels of ATP. The massive reduction in overall metabolic activity induced by Nampt inhibition was accompanied by a dramatic decrease in pancreatic tumor growth. The results of the mechanistic experiments showed that neither the NAD-dependent enzymes PARP-1 nor SIRT1 play a significant role on the effect of Nampt inhibition on pancreatic cancer cells. However, we identified a role for the NAD degradation pathway mediated by the NADase CD38 on the sensitivity to Nampt inhibition. The responsiveness to Nampt inhibition is modulated by the expression of CD38; low levels of this enzyme decrease the sensitivity to Nampt inhibition. In contrast, its overexpression decreased cell growth <i>in vitro</i> and <i>in vivo</i>, and further increased the sensitivity to Nampt inhibition.</p><p><b>Conclusions:</b> Our study demonstrates that NAD metabolism is essential for pancreatic cancer cell survival and proliferation and that targeting NAD synthesis via the Nampt pathway could lead to novel therapeutic treatments for pancreatic cancer. <i>Clin Cancer Res; 20(1); 120–30. ©2013 AACR</i>.</p></div>

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call