Abstract

<div>Abstract<p>SIRT2 is a protein deacetylase with tumor suppressor activity in breast and liver tumors where it is mutated; however, the critical substrates mediating its antitumor activity are not fully defined. Here we demonstrate that SIRT2 binds, deacetylates, and inhibits the peroxidase activity of the antioxidant protein peroxiredoxin (Prdx-1) in breast cancer cells. Ectopic overexpression of SIRT2, but not its catalytically dead mutant, increased intracellular levels of reactive oxygen species (ROS) induced by hydrogen peroxide, which led to increased levels of an overoxidized and multimeric form of Prdx-1 with activity as a molecular chaperone. Elevated levels of SIRT2 sensitized breast cancer cells to intracellular DNA damage and cell death induced by oxidative stress, as associated with increased levels of nuclear FOXO3A and the proapoptotic BIM protein. In addition, elevated levels of SIRT2 sensitized breast cancer cells to arsenic trioxide, an approved therapeutic agent, along with other intracellular ROS-inducing agents. Conversely, antisense RNA-mediated attenuation of SIRT2 reversed ROS-induced toxicity as demonstrated in a zebrafish embryo model system. Collectively, our findings suggest that the tumor suppressor activity of SIRT2 requires its ability to restrict the antioxidant activity of Prdx-1, thereby sensitizing breast cancer cells to ROS-induced DNA damage and cell cytotoxicity. <i>Cancer Res; 76(18); 5467–78. ©2016 AACR</i>.</p></div>

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.