Abstract

<div>Abstract<p>Members of the tropomyosin receptor kinase (TRK) family are expressed in their constitutively activated forms as a result of a gene fusion that occurs across a wide variety of cancer types. We have identified CH7057288 as a potent and selective TRK inhibitor that belongs to a novel chemical class. CH7057288 showed selective inhibitory activity against TRKA, TRKB, and TRKC in cell-free kinase assays and suppressed proliferation of TRK fusion–positive cell lines, but not that of TRK-negative cell lines. Strong <i>in vivo</i> tumor growth inhibition was observed in subcutaneously implanted xenograft tumor models of TRK fusion–positive cells. Furthermore, in an intracranial implantation model mimicking brain metastasis, CH7057288 significantly induced tumor regression and improved event-free survival. Recently, resistant mutations in the kinase domain of TRK have been reported in patients who show disease progression after treatment with the TRK inhibitors now under clinical development. Our compound maintained similar levels of <i>in vitro</i> and <i>in vivo</i> activity against one of these resistant mutants as it did to wild-type TRK. An X-ray crystal structure of the TRKA and CH7057288 complex supported the activity against the mutant. In addition, gene expression analysis revealed that CH7057288 suppressed MAPK and E2F pathways as downstream signaling of TRK fusion. Therefore, CH7057288 could be a promising therapeutic agent for TRK fusion–positive cancer.</p></div>

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.