Abstract
<div>Abstract<p>Schlafen 11 (SLFN11) is an increasingly prominent predictive biomarker and a molecular sensor for a wide range of clinical drugs: topoisomerases, PARP and replication inhibitors, and platinum derivatives. To expand the spectrum of drugs and pathways targeting SLFN11, we ran a high-throughput screen with 1,978 mechanistically annotated, oncology-focused compounds in two isogenic pairs of SLFN11-proficient and -deficient cells (CCRF-CEM and K562). We identified 29 hit compounds that selectively kill SLFN11-proficient cells, including not only previously known DNA-targeting agents, but also the neddylation inhibitor pevonedistat (MLN-4924) and the DNA polymerase α inhibitor AHPN/CD437, which both induced SLFN11 chromatin recruitment. By inactivating cullin-ring E3 ligases, pevonedistat acts as an anticancer agent partly by inducing unscheduled re-replication through supraphysiologic accumulation of CDT1, an essential factor for replication initiation. Unlike the known DNA-targeting agents and AHPN/CD437 that recruit SLFN11 onto chromatin in 4 hours, pevonedistat recruited SLFN11 at late time points (24 hours). While pevonedistat induced unscheduled re-replication in SLFN11-deficient cells after 24 hours, the re-replication was largely blocked in SLFN11-proficient cells. The positive correlation between sensitivity to pevonedistat and SLFN11 expression was also observed in non-isogenic cancer cells in three independent cancer cell databases (NCI-60, CTRP: Cancer Therapeutics Response Portal and GDSC: Genomic of Drug Sensitivity in Cancer). The present study reveals that SLFN11 not only detects stressed replication but also inhibits unscheduled re-replication induced by pevonedistat, thereby enhancing its anticancer efficacy. It also suggests SLFN11 as a potential predictive biomarker for pevonedistat in ongoing and future clinical trials.</p></div>
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.