Abstract

<div>Abstract<p>Many human cancer cells are sensitive to killing by the proapoptotic ligand TNF-related apoptosis-inducing ligand (TRAIL), which is under study for cancer treatment in clinical trials. The TRAIL receptor (TRAIL-R1; also known as death receptor 4) is a transmembrane receptor that mediates TRAIL-induced apoptosis in cancer cells. In this study, we show that retinoids sensitize cancer cells to TRAIL-induced apoptosis by upregulating expression of TRAIL-R1. All-<i>trans</i> retinoic acid (ATRA) upregulated TRAIL-R1 expression in human cancer cells at the transcriptional level. The ability of ATRA to activate TRAIL-R1 expression was inhibited by retinoic acid receptor (RAR) antagonists or siRNAs, but augmented by several RAR agonists. In analyzing how ATRA induces RAR-dependent transcriptional upregulation of TRAIL-R1, we identified 2 putative retinoic acid response elements termed Pal-17 (a palindrome separated by 17 bases) and DR-11 (a direct repeat separated by 11 bases) in the 5′-flanking region of <i>TRAIL-R1</i> gene. Deletion of DR-11, but not Pal-17, abrogated the ability of ATRA to stimulate TRAIL-R1 promoter activity. Consistent with this observation, RAR binding to DR-11, but not to Pal-17, was detected by chromatin immunoprecipitation assay in ATRA-treated cells, arguing that DR-11 was responsible for ATRA-mediated activation of the <i>TRAIL-R1</i> gene. ATRA augmented TRAIL-induced apoptosis of cancer cells, and this activity was attenuated by a blockade to upregulation of TRAIL-R1 expression. Taken together, our findings establish that ATRA accentuates TRAIL-induced apoptosis, reveal a novel mechanism by which retinoids modulate apoptosis, and suggest a novel strategy to augment the anti-cancer activity of TRAIL. <i>Cancer Res; 71(15); 5245–54. ©2011 AACR</i>.</p></div>

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.