Abstract

<div>Abstract<p>Fibroblasts are a key stromal cell in the tumor microenvironment (TME) and promote tumor growth via release of various growth factors. Stromal fibroblasts in cancer, called cancer-associated fibroblasts (CAF), are related to myofibroblasts, an activated form of fibroblast. While investigating the role of stroma fibroblasts on radiation-related carcinogenesis, it was observed following long-term fractionated radiation (FR) that the morphology of human diploid fibroblasts changed from smaller spindle shapes to larger flat shapes. These cells expressed smooth muscle actin (α-SMA) and platelet-derived growth factor receptors, markers of myofibroblasts and CAFs, respectively. Long-term FR induces progressive damage to the fibroblast nucleus and mitochondria via increases in mitochondrial reactive oxygen species (ROS) levels. Here, it is demonstrated that long-term FR-induced α-SMA–positive cells have decreased mitochondrial membrane potential and activated oxidative stress responses. Antioxidant N-acetyl cysteine suppressed radiation-induced mitochondrial damage and generation of myofibroblasts. These results indicate that mitochondrial ROS are associated with the acquisition of myofibroblasts after long-term FR. Mechanistically, mitochondrial ROS activated TGFβ signaling which in turn mediated the expression of α-SMA in radiation-induced myofibroblasts. Finally, <i>in vivo</i> tumor growth analysis in a human tumor xenograft model system revealed that long-term FR-induced myofibroblasts promote tumor growth by enhancing angiogenesis.</p><p><b>Implications:</b> Radiation affects malignant cancer cells directly and indirectly via molecular alterations in stromal fibroblasts such as activation of TGFβ and angiogenic signaling pathways. <i>Mol Cancer Res; 16(11); 1676–86. ©2018 AACR</i>.</p></div>

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call