Abstract

<div>Abstract<p>Cancer stem cells (CSC) are supported by the tumor microenvironment, and non-CSCs can regain CSC phenotypes in certain niches, leading to limited clinical benefits of CSC-targeted therapy. A better understanding of the mechanisms governing the orchestration of the CSC niche could help improve the therapeutic targeting of CSCs. Here, we report that Rab13, a small GTPase, is highly expressed in breast CSCs (BCSC). Rab13 depletion suppressed breast cancer cell stemness, tumorigenesis, and chemoresistance by reducing tumor-stroma cross-talk. Accordingly, Rab13 controlled the membrane translocation of C-X-C chemokine receptor type 1/2 (CXCR1/2), allowing tumor cells to interact with tumor-associated macrophages and cancer-associated fibroblasts to establish a supportive BCSC niche. Targeting the Rab13-mediated BCSC niche with bardoxolone-methyl (C-28 methyl ester of 2-cyano-3, 12-dioxoolen-1, 9-dien-28-oic acid; CDDO-Me) prevented BCSC stemness <i>in vitro</i> and <i>in vivo</i>. These findings highlight the novel regulatory mechanism of Rab13 in BCSC, with important implications for the development of therapeutic strategies for disrupting the BCSC niche.</p>Significance:<p>Targeting Rab13 perturbs formation of the breast cancer stem cell niche by inhibiting cross-talk between cancer cells and the tumor microenvironment, providing a therapeutic opportunity for niche-targeted breast cancer treatment.</p></div>

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.