Abstract

<div>Abstract<p>Cutaneous T-cell lymphoma (CTCL) develops from clonally expanded CD4<sup>+</sup> T cells in a background of chronic inflammation. Although dendritic cells (DCs) stimulate T cells and are present in skin, cutaneous T cells in CTCL do not respond with effective antitumor immunity. We evaluated primary T-cell and DC émigrés from epidermal and dermal explant cultures of skin biopsies from CTCL patients (<i>n</i> = 37) and healthy donors (<i>n</i> = 5). Compared with healthy skin, CD4<sup>+</sup> CTCL populations contained more T cells expressing PD-1, CTLA-4, and LAG-3. CD8<sup>+</sup> CTCL populations contained more T cells expressing CTLA-4 and LAG-3. CTCL populations also contained more T cells expressing the inducible T-cell costimulator (ICOS), a marker of T-cell activation. DC émigrés from healthy or CTCL skin biopsies expressed PD-L1, indicating that maturation during migration resulted in PD-L1 expression irrespective of disease. Most T cells did not express PD-L1. Using skin samples from 49 additional CTCL patients for an unsupervised analysis of genome-wide mRNA expression profiles corroborated that advanced T3/T4-stage samples expressed more checkpoint inhibition mRNA compared with T1/T2 stage patients or healthy controls. Exhaustion of activated T cells is therefore a hallmark of both CD4<sup>+</sup> and CD8<sup>+</sup> T cells isolated from the lesional skin of patients with CTCL, with increasing expression as the disease progresses. These results justify identification of antigens driving T-cell exhaustion and the evaluation of immune checkpoint inhibition to reverse T-cell exhaustion earlier in the treatment of CTCL. <i>Cancer Immunol Res; 6(8); 900–9. ©2018 AACR</i>.</p></div>

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call