Abstract

<div>Abstract<p>MUC12 is a transmembrane mucin that is highly expressed in >50% of primary and metastatic colorectal tumors. MUC12 is also expressed by normal epithelial cells of the colon and small intestine. Although MUC12 localization in normal epithelial cells is restricted to the apical membrane, expression in tumors is depolarized and shows broad membrane localization. The differential localization of MUC12 in tumor cells as compared with normal cells makes it a potential therapeutic target. Here, we evaluated targeting of MUC12 with a BiTE (bispecific T-cell engager) molecule. We generated a panel of proof-of-concept half-life extended (HLE) BiTE molecules that bind MUC12 on tumor cells and CD3 on T cells. We prioritized one molecule based on <i>in vitro</i> activity for further characterization <i>in vivo</i>. <i>In vitro</i>, the MUC12 HLE BiTE molecule mediated T-cell–redirected lysis of MUC12-expressing cells with half-maximal lysis of 4.4 ± 0.9 to 117 ± 78 pmol/L. In an exploratory cynomolgus monkey toxicology study, the MUC12 HLE BiTE molecule administered at 200 μg/kg with a step dose to 1,000 μg/kg was tolerated with minimal clinical observations. However, higher doses were not tolerated, and there was evidence of damage in the gastrointestinal tract, suggesting dose levels projected to be required for antitumor activity may be associated with on-target toxicity. Together, these data demonstrate that the apically restricted expression of MUC12 in normal tissues is accessible to BiTE molecule target engagement and highlight the difficult challenge of identifying tumor-selective antigens for solid tumor T-cell engagers.</p></div>

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call