Abstract

<div>Abstract<p>GPR56 is an orphan G protein–coupled receptor, mutations of which have recently been associated with bilateral frontoparietal polymicrogyria, a rare neurologic disease that has implications in brain development. However, no phenotype beyond central nervous system has yet been described for the GPR56-null mutations despite abundant GPR56 expression in many non–central nervous system adult tissues. In the present study, we show that higher GPR56 expression is correlated with the cellular transformation phenotypes of several cancer tissues compared with their normal counterparts, implying a potential oncogenic function. RNA interference–mediated GPR56 silencing results in apoptosis induction and reduced anchorage-independent growth of cancer cells via increased anoikis, whereas cDNA overexpression resulted in increased foci formation in mouse fibroblast NIH3T3 cell line. When GPR56 silencing was induced <i>in vivo</i> in several xenograft tumor models, significant tumor responses (including regression) were observed, suggesting the potential of targeting GPR56 in the development of tumor therapies. The expression profiling of GPR56-silenced A2058 melanoma cell line revealed several genes whose expression was affected by GPR56 silencing, particularly those in the integrin-mediated signaling and cell adhesion pathways. The potential role of GPR56 in cancer cell adhesion was further confirmed by the observation that GPR56 silencing also reduced cell adhesion to the extracellular matrix, which is consistent with the observed increase in anoikis and reduction in anchorage-independent growth phenotypes. The oncogenic potential and apparent absence of physiologic defects in adult human tissues lacking GPR56, as well as the targetable nature of G protein–coupled receptor by small molecule or antibody, make GPR56 an attractive drug target for the development of cancer therapies. [Mol Cancer Ther 2007;6(6):1840–50]</p></div>

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.