Abstract

<div>Abstract<p>Granulocyte colony stimulating factor (G-CSF), an essential cytokine regulating granulopoiesis, is expressed in a substantial proportion of breast cancers, and it has been implicated in cancer progression. Here, we examined effects of G-CSF on the development of bone metastases of breast cancer using immunocompetent mouse models. The expression of CXC chemokine ligand 12 (CXCL12) in bone marrow stromal cells, which plays a critical role in the maintenance of hematopoietic stem cells and also in cancer cell homing to bone, was markedly decreased in mice treated with G-CSF. Flow cytometric analysis revealed that pretreatment of mice with G-CSF reduced the number of bone-homing cancer cells. G-CSF also increased the population of myeloid-derived suppressor cells (MDSCs) in bone marrow. Depletion of MDSCs using anti–Gr-1 antibody treatment significantly decreased the metastatic tumor burden in bone. The overall effects of G-CSF on bone metastases were finally examined using two different treatment protocols. When mice were treated with G-CSF prior to the tumor cell inoculation, G-CSF did not change bone metastatic-tumor burden. In contrast, when G-CSF treatment was started after the tumor cells had homed to bone, G-CSF significantly accelerated bone metastases formation. These results suggest that G-CSF suppressed cancer cell homing to bone by downregulating CXCL12 expression in bone marrow stromal cells, whereas G-CSF stimulated the progression of bone metastases at least in part by MDSC-mediated mechanisms.</p>Implications:<p>G-CSF had opposing effects on the initiation and progression of bone metastases of breast cancer and the balance may regulate the metastatic tumor burden.</p></div>

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call