Abstract

<div>Abstract<p>In our prior studies, obesity was associated with shorter telomeres in prostate cancer-associated stromal (CAS) cells, and shorter CAS telomeres were associated with an increased risk of prostate cancer death. To determine whether the association between obesity and shorter CAS telomeres is replicable, we conducted a pooled analysis of 790 men who were surgically treated for prostate cancer, whose tissue samples were arrayed on five tissue microarray (TMA) sets. Telomere signal was measured using a quantitative telomere-specific FISH assay and normalized to 4′,6-diamidino-2-phenylindole for 351 CAS cells (mean) per man; men were assigned their median value. Weight and height at surgery, collected via questionnaire or medical record, were used to calculate body mass index (BMI; kg/m<sup>2</sup>) and categorize men as normal (<25), overweight (25 ≤ BMI < 30), or obese (≥30). Analyses were stratified by grade and stage. Men were divided into tertiles of TMA- (overall) or TMA- and disease aggressiveness- (stratified) specific distributions; short CAS telomere status was defined by the bottom two tertiles. We used generalized linear mixed models to estimate the association between obesity and short CAS telomeres, adjusting for age, race, TMA set, pathologic stage, and grade. Obesity was not associated with short CAS telomeres overall, or among men with nonaggressive disease. Among men with aggressive disease (Gleason≥4+3 and stage>T2), obese men had a 3-fold increased odds of short CAS telomeres (OR: 3.06; 95% confidence interval: 1.07–8.75; <i>P</i><sub>trend</sub> = 0.045) when compared with normal weight men. Telomere shortening in prostate stromal cells may be one mechanism through which lifestyle influences lethal prostate carcinogenesis.</p>Prevention Relevance:<p>This study investigates a potential mechanism underlying the association between obesity and prostate cancer death. Among men with aggressive prostate cancer, obesity was associated with shorter telomeres prostate cancer associated stromal cells, and shorter CAS telomeres have been associated with an increased risk of prostate cancer death.</p></div>

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.