Abstract

<div>Abstract<p>NUP98 is a recurrent fusion partner in chromosome translocations that cause acute myelogenous leukemia. NUP98, a nucleoporin, and its interaction partner Rae1, have been implicated in the control of chromosome segregation, but their mechanistic contributions to tumorigenesis have been unclear. Here, we show that expression of NUP98 fusion oncoproteins causes mitotic spindle defects and chromosome missegregation, correlating with the capability of NUP98 fusions to cause premature securin degradation and slippage from an unsatisfied spindle assembly checkpoint (SAC). NUP98 fusions, unlike wild-type NUP98, were found to physically interact with the anaphase promoting complex/cyclosome (APC/C)<sup>Cdc20</sup> and to displace the BubR1 SAC component, suggesting a possible mechanistic basis for their interference with SAC function. In addition, NUP98 oncoproteins displayed a prolonged half-life in cells. We found that NUP98 stability is controlled by a PEST sequence, absent in NUP98 oncoproteins, whose deletion reproduced the aberrant SAC-interfering activity of NUP98 oncoproteins. Together, our findings suggest that NUP98 oncoproteins predispose myeloid cells to oncogenic transformation or malignant progression by promoting whole chromosome instability. <i>Cancer Res; 74(4); 1079–90. ©2013 AACR</i>.</p></div>

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.