Abstract

<div>Abstract<p>Immunotherapy has revolutionized the treatment of advanced melanoma. Because the pathways mediating resistance to immunotherapy are largely unknown, we conducted transcriptome profiling of preimmunotherapy tumor biopsies from patients with melanoma that received PD-1 blockade or adoptive cell therapy with tumor-infiltrating lymphocytes. We identified two melanoma-intrinsic, mutually exclusive gene programs, which were controlled by IFNγ and MYC, and the association with immunotherapy outcome. MYC-overexpressing melanoma cells exhibited lower IFNγ responsiveness, which was linked with JAK2 downregulation. Luciferase activity assays, under the control of JAK2 promoter, demonstrated reduced activity in MYC-overexpressing cells, which was partly reversible upon mutagenesis of a MYC E-box binding site in the JAK2 promoter. Moreover, silencing of MYC or its cofactor MAX with siRNA increased JAK2 expression and IFNγ responsiveness of melanomas, while concomitantly enhancing the effector functions of T cells coincubated with MYC-overexpressing cells. Thus, we propose that MYC plays a pivotal role in immunotherapy resistance through downregulation of JAK2.</p></div>

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.