Abstract

<div>Abstract<p>Because of high heterogeneity, molecular characterization of prostate cancer based on biopsy sampling is often challenging. Hence, a minimally invasive method to determine the molecular imprints of a patient's tumor for risk stratification would be advantageous. In this study, we employ a novel, digital amplification-free quantification method using the nCounter technology (NanoString Technologies) to profile exosomal serum miRNAs (ex-miRNA) from aggressive prostate cancer cases, benign prostatic hyperplasia, and disease-free controls. We identified several dysregulated miRNAs, one of which was the tumor suppressor miR-1246. miR-1246 was downregulated in prostate cancer clinical tissues and cell lines and was selectively released into exosomes. Overexpression of miR-1246 in a prostate cancer cell line significantly inhibited xenograft tumor growth <i>in vivo</i> and increased apoptosis and decreased proliferation, invasiveness, and migration <i>in vitro</i>. miR-1246 inhibited N-cadherin and vimentin activities, thereby inhibiting epithelial–mesenchymal transition. Ex-miR-1246 expression correlated with increasing pathologic grade, positive metastasis, and poor prognosis. Our analyses suggest ex-miR-1246 as a promising prostate cancer biomarker with diagnostic potential that can predict disease aggressiveness.</p><p><b>Significance:</b> Dysregulation of exosomal miRNAs in aggressive prostate cancer leads to alteration of key signaling pathways associated with metastatic prostate cancer. <i>Cancer Res; 78(7); 1833–44. ©2018 AACR</i>.</p></div>

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call