Abstract

<div>Abstract<p><b>Purpose:</b> Chronic lymphocytic leukemia (CLL) resistant to fludarabine-containing treatments responds to oxaliplatin-based therapy that contains fludarabine. We postulated that a mechanism for this activity is the incorporation of fludarabine into DNA during nucleotide excision repair (NER) stimulated by oxaliplatin adducts.</p><p><b>Experimental Design:</b> We analyzed CLL cell viability, DNA damage, and signaling pathways in response to treatment by fludarabine, oxaliplatin, or the combination. The dependency of the combination on oxaliplatin-induced DNA repair was investigated using siRNA in CLL cells or cell line models of NER deficiency.</p><p><b>Results:</b> Synergistic apoptotic killing was observed in CLL cells after exposure to the combination <i>in vitro</i>. Oxaliplatin induced DNA synthesis in CLL cells, which was inhibited by fludarabine and was eliminated by knockdown of XPF, the NER 5′-endonuclease. Wild-type Chinese hamster ovarian cells showed synergistic killing after combination treatment, whereas only additive killing was observed in cells lacking XPF. Inhibition of repair by fludarabine in CLL cells was accompanied by DNA single-strand break formation. CLL cells initiated both intrinsic and extrinsic apoptotic pathways as evidenced by the loss of mitochondrial outer membrane potential and partial inhibition of cell death upon incubation with FasL antibody.</p><p><b>Conclusions:</b> The synergistic cell killing is caused by a mechanistic interaction that requires the initiation of XPF-dependent excision repair in response to oxaliplatin adducts, and the inhibition of that process by fludarabine incorporation into the repair patch. This combination strategy may be useful against other malignancies. <i>Clin Cancer Res; 17(14); 4731–41. ©2011 AACR</i>.</p></div>

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.