Abstract

<div>Abstract<p>Integrins play a role in the resistance of advanced cancers to radiotherapy and chemotherapy. In this study, we show that high expression of the α5 integrin subunit compromises temozolomide-induced tumor suppressor p53 activity in human glioblastoma cells. We found that depletion of the α5 integrin subunit increased p53 activity and temozolomide sensitivity. However, when cells were treated with the p53 activator nutlin-3a, the protective effect of α5 integrin on p53 activation and cell survival was lost. In a functional p53 background, nutlin-3a downregulated the α5 integrin subunit, thereby increasing the cytotoxic effect of temozolomide. Clinically, α5β1 integrin expression was associated with a more aggressive phenotype in brain tumors, and high α5 integrin gene expression was associated with decreased survival of patients with high-grade glioma. Taken together, our findings indicate that negative cross-talk between α5β1 integrin and p53 supports glioma resistance to temozolomide, providing preclinical proof-of-concept that α5β1 integrin represents a therapeutic target for high-grade brain tumors. Direct activation of p53 may remain a therapeutic option in the subset of patients with high-grade gliomas that express both functional p53 and a high level of α5β1 integrin. <i>Cancer Res; 72(14); 3463–70. ©2012 AACR</i>.</p></div>

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call