Abstract

<div>AbstractPurpose:<p>Immune checkpoint blockade has shown remarkable efficacy, but in only a minority of patients with cancer, suggesting the need to develop additional treatment strategies. Aberrant glycosylation in tumors, resulting from the dysregulated expression of key enzymes in glycan biosynthesis, modulates the immune response. However, the role of glycan biosynthesis enzymes in antitumor immunity is poorly understood. We aimed to study the immunomodulatory effects of these enzymes.</p>Experimental Design:<p>We integrated transcriptional profiles of treatment-naïve human tumors and functional CRISPR screens to identify glycometabolism genes with immunomodulatory effects. We further validated our findings using <i>in vitro</i> coculture and <i>in vivo</i> syngeneic tumor growth assays.</p>Results:<p>We identified <i>MAN2A1</i>, encoding an enzyme in N-glycan maturation, as a key immunomodulatory gene. Analyses of public immune checkpoint blockade trial data also suggested a synergy between MAN2A1 inhibition and anti–PD-L1 treatment. Loss of <i>Man2a1</i> in cancer cells increased their sensitivity to T-cell–mediated killing. <i>Man2a1</i> knockout enhanced response to anti–PD-L1 treatment and facilitated higher cytotoxic T-cell infiltration in tumors under anti–PD-L1 treatment. Furthermore, a pharmacologic inhibitor of MAN2A1, swainsonine, synergized with anti–PD-L1 in syngeneic melanoma and lung cancer models, whereas each treatment alone had little effect.</p>Conclusions:<p><i>Man2a1</i> loss renders cancer cells more susceptible to T-cell–mediated killing. Swainsonine synergizes with anti–PD-L1 in suppressing tumor growth. In light of the limited efficacy of anti–PD-L1 and failed phase II clinical trial on swainsonine, our study reveals a potential therapy combining the two to overcome tumor immune evasion.</p><p><i>See related commentary by Bhat and Kabelitz, p. 5778</i></p></div>

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.