Abstract

<div>Abstract<p>Pancreatic ductal adenocarcinoma (PDAC) is a stroma-rich cancer. Extracellular matrix proteins produced by cancer-associated fibroblasts (CAFs) found in tumor stroma that impedes effective delivery of chemotherapeutic agents results in poor response in patients with PDAC. Previously, our group reported that glypican-1 (GPC1) was overexpressed in human PDAC and negatively correlated with patient survival. Immunohistochemical analysis of 25 patients with PDAC tumor specimens revealed elevated expression of GPC1 in stromal cells and pancreatic cancer cells in 80% of patients. Interestingly, GPC1 was expressed on CAFs in PDAC. We generated a GPC1 antibody–drug conjugate conjugated with monomethyl auristatin E [GPC1-ADC(MMAE)] and evaluated its preclinical antitumor activity by targeting GPC1-positive CAF and cancer cells in PDAC. GPC1-ADC(MMAE) inhibited the growth of GPC1-positive PDAC cell lines <i>in vitro</i>. Furthermore, GPC1-ADC(MMAE) showed a potent antitumor effect in the PDAC patient-derived tumor xenograft (PDX) model against GPC1-positive CAF and heterogeneous GPC1-expressing cancer cells. Notably, GPC1-ADC(MMAE) showed robust preclinical efficacy against GPC1 in a stroma-positive/cancer-negative PDAC PDX model. GPC1-ADC(MMAE) was delivered and internalized to CAFs. Although apoptosis was not observed in CAFs, the released MMAE from CAFs via MDR-1 induced apoptosis of cancer cells neighboring CAFs and efficiently inhibited PDAC tumor growth. GPC1-ADC(MMAE) exhibited potent and unique antitumor activity in GPC1-positive PDAC PDX models, which suggests that GPC1 is a novel therapeutic target in PDAC and other stromal GPC1-positive solid tumors. These findings show that targeting GPC1 on CAF using GPC1-ADC(MMAE) is a useful approach in case of stroma-rich tumors such as PDAC.</p></div>

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call