Abstract

<div>Abstract<p>Early detection and adjuvant therapies have significantly improved survival of patients with breast cancer over the past three decades. In contrast, management of metastatic disease remains unresolved. Brain metastasis is a late complication frequently observed among patients with metastatic breast cancer, whose poor prognosis calls for novel and more effective therapies. Here, we report that active hypoxia inducible factor-1 (HIF1) signaling and loss of the miRNA <i>let-7d</i> concur to promote brain metastasis in a recently established model of spontaneous breast cancer metastasis from the primary site to the brain (4T1-BM<sub>2</sub>), and additionally in murine and human experimental models of breast cancer brain metastasis (D2A1-BM<sub>2</sub> and MDA231-BrM<sub>2</sub>). Active HIF1 and let-7d loss upregulated expression of platelet-derived growth factor (PDGF) B/A in murine and human brain metastatic cells, respectively, while either individual silencing of HIF1α and PDGF-A/B or let-7d overexpression suppressed brain metastasis formation in the tested models. Let-7d silencing upregulated HIF1α expression and HIF1 activity, indicating a regulatory hierarchy of the system. The clinical relevance of the identified targets was supported by human gene expression data analyses. Treatment of mice with nilotinib, a kinase inhibitor impinging on PDGF receptor (PDGFR) signaling, prevented formation of spontaneous brain metastases in the 4T1-BM<sub>2</sub> model and reduced growth of established brain metastases in mouse and human models. These results identify active HIF1 signaling and let-7d loss as coordinated events promoting breast cancer brain metastasis through increased expression of PDGF-A/B. Moreover, they identify PDGFR inhibition as a potentially actionable therapeutic strategy for patients with brain metastatis.</p>Significance:<p>These findings show that loss of miRNA let-7d and active HIF1 signaling promotes breast cancer brain metastasis via PDGF and that pharmacologic inhibition of PDGFR suppresses brain metastasis, suggesting novel therapeutic opportunities.</p></div>

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.