Abstract

<div>Abstract<p>One of the most detrimental hallmarks of glioblastoma multiforme (GBM) is cellular invasiveness, which is considered a potential cause of tumor recurrence. Infiltrated GBM cells are difficult to completely eradicate surgically and with local therapeutic modalities. Although much effort has focused on understanding the various mechanisms controlling GBM invasiveness, its nature remains poorly understood. In this study, we established highly serial intracranial transplantation. U87R4 cells were highly invasive and displayed stem cell-like properties, as compared to noninvasive but proliferative U87L4 cells. Microarray analysis during serial transplantation revealed that apoptosis-inducing genes (<i>caspase3</i> and <i>PDCD4</i>) were downregulated whereas several cancer stem cell–relevant genes [Frizzled 4 (<i>FZD4</i>) and <i>CD44</i>] were upregulated in more invasive cells. U87R4 cells were resistant to anticancer drug–induced cell death, partly due to downregulation of caspase3 and PDCD4, and they retained activated Wnt/β-catenin signaling due to upregulation of Frizzled 4, which was sufficient to control neurosphere formation. We also found that FZD4 promoted expression of the epithelial to mesenchymal transition regulator SNAI1, along with acquisition of a mesenchymal phenotype. Taken together, our results argue that Frizzled 4 is a member of the Wnt signaling family that governs both stemness and invasiveness of glioma stem cells, and that it may be a major cause of GBM recurrence and poor prognosis. <i>Cancer Res; 71(8); 3066–75. ©2011 AACR</i>.</p></div>

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.