Abstract

<div>Abstract<p>New approaches are needed to overcome intrinsic therapy resistance in glioblastoma (GBM). Because GBMs exhibit sexual dimorphism and are reported to express steroid hormone receptors, we reasoned that signaling through the androgen receptor (AR) could mediate therapy resistance in GBM, much as it does in AR-positive prostate and breast cancers. We found that nearly half of GBM cell lines, patient-derived xenografts (PDX), and human tumors expressed AR at the transcript and protein level—with expression levels overlapping those of primary prostate cancer. Analysis of gene expression datasets also revealed that AR expression is higher in GBM patient samples than normal brain tissue. Multiple clinical-grade antiandrogens slowed the growth of and radiosensitized AR-positive GBM cell lines and PDXs <i>in vitro</i> and <i>in vivo</i>. Antiandrogens blocked the ability of AR-positive GBM PDXs to engage adaptive transcriptional programs following radiation and slowed the repair of radiation-induced DNA damage. These results suggest that combining blood–brain barrier permeable antiandrogens with radiation may have promise for patients with AR-positive GBMs.</p></div>

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.