Abstract

<div>Abstract<p>Aberrant activation of multiple signaling pathways is common in acute myelogenous leukemia (AML) cells, which can be linked to a poor prognosis for patients with this disease. Previous research with mTOR or MEK inhibitors revealed cytostatic, rather than cytotoxic, effects in <i>in vitro</i> and <i>in vivo</i> AML models. We evaluated the combination effect of the mTOR inhibitor AZD8055 and the MEK inhibitor selumetinib on human AML cell lines and primary AML samples. This combination demonstrated synergistic proapoptotic effects in AML cells with high basal activation of MEK and mTOR. We next incorporated the BH3 mimetic ABT-737 into this combination regimen to block Bcl-2, which further enhanced the apoptogenic effect of MEK/mTOR inhibition. The combination treatment also had a striking proapoptotic effect in CD33<sup>+</sup>/CD34<sup>+</sup> AML progenitor cells from primary AML samples with <i>NRAS</i> mutations. Mechanistically, upregulation of the proapoptotic protein Bim, accompanied by the downregulation of the antiapoptotic protein Mcl-1 (mainly via protein degradation), seemed to play critical roles in enhancing the combination drug effect. Furthermore, the modulation of survivin, Bax, Puma, and X-chromosome-linked inhibitor of apoptosis protein (XIAP) expression suggested a role for mitochondria-mediated apoptosis in the cytotoxicity of the drug combination. Consequently, the concomitant blockade of prosurvival MEK/mTOR signaling and the deactivation of Bcl-2 could provide a mechanism-based integrated therapeutic strategy for the eradication of AML cells. <i>Mol Cancer Ther; 13(7); 1848–59. ©2014 AACR</i>.</p></div>

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call