Abstract

<div>Abstract<p>The eIF3e protein is a component of the multisubunit eIF3 complex, which is essential for cap-dependent translation initiation. Decreased eIF3e expression is often observed in breast and lung cancer and has been shown to induce epithelial-to-mesenchymal transition (EMT) in breast epithelial cells by an unknown mechanism. Here, we study the effect of decreased eIF3e expression in lung epithelial cells by creating stable clones of lung epithelial cells (A549) that express an eIF3e-targeting shRNA. Our data indicate that decreased eIF3e expression in lung epithelial cells leads to EMT, as it does in breast epithelial cells. Importantly, we show that decreased eIF3e expression in both lung and breast epithelial cells leads to the overproduction of the TGFβ cytokine and that inhibition of TGFβ signaling can reverse eIF3e-regulated EMT in lung epithelial cells. In addition, we discovered that several mRNAs that encode important EMT regulators are translated by a cap-independent mechanism when eIF3e levels are reduced. These findings indicate that EMT mediated by a decrease in eIF3e expression may be a general phenomenon in epithelial cells and that it requires activation and maintenance of the TGFβ signaling pathway.</p><p><b>Implications:</b> These results indicate that inhibition of TGFβ signaling could be an efficient way to prevent metastasis in patients with NSCLC that display reduced eIF3e expression. <i>Mol Cancer Res; 13(10); 1421–30. ©2015 AACR</i>.</p></div>

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call