Abstract

<div>Abstract<p>Chromosomal instability is a hallmark of many tumor types. Complex chromosomal rearrangements with associated gene amplification, known as complicons, characterize many hematologic and solid cancers. Whereas chromosomal aberrations, including complicons, are useful diagnostic and prognostic cancer markers, their molecular origins are not known. Although accumulating evidence has implicated DNA double-strand break repair in suppression of oncogenic genome instability, the genomic elements required for chromosome rearrangements, especially complex lesions, have not been elucidated. Using a mouse model of B-lineage lymphoma, characterized by complicon formation involving the immunoglobulin heavy chain (<i>Igh</i>) locus and the c-<i>myc</i> oncogene, we have now investigated the requirement for specific genomic segments as donors for complex rearrangements. We now show that specific DNA double-strand breaks, occurring within a narrow segment of <i>Igh</i>, are necessary to initiate complicon formation. By contrast, neither specific DNA breaks nor the powerful intronic enhancer <i>Eμ</i> are required for complicon-independent oncogenesis. This study is the first to delineate mechanisms of complex versus simple instability and the first to identify specific chromosomal elements required for complex chromosomal aberrations. These findings will illuminate genomic cancer susceptibility and risk factors. [Cancer Res 2009;69(10):4454–60]</p></div>

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.