Abstract

<div>Abstract<p>The combination of bevacizumab with temozolomide and radiotherapy was shown to prolong progression-free survival in newly diagnosed patients with glioblastoma, and this emphasizes the potential of bevacizumab as a glioma treatment. However, although bevacizumab effectively inhibits angiogenesis, it has also been reported to induce invasive proliferation. This study examined gene expression in glioma cells to investigate the mechanisms of bevacizumab-induced invasion. We made a human glioma U87ΔEGFR cell xenograft model by stereotactically injecting these cells into the brain of animals. We administered bevacizumab intraperitoneally three times per week. At 18 days after tumor implantation, the brains were removed for histopathology and mRNA was extracted. <i>In vivo</i>, bevacizumab treatment increased glioma cell invasion. qRT-PCR array analysis revealed upregulation of δ-<i>catenin</i> (<i>CTNND2</i>) and several other factors. <i>In vitro</i>, bevacizumab treatment upregulated δ-catenin expression. A low concentration of bevacizumab was not cytotoxic, but tumor cell motility was increased in scratch wound assays and two-chamber assays. Overexpression of δ-catenin increased the tumor invasion <i>in vitro</i> and <i>in vivo</i>. However, δ-catenin knockdown decreased glioma cell invasiveness. The depth of tumor invasion in the U87ΔEGFR cells expressing δ-catenin was significantly increased compared with empty vector-transfected cells. The increase in invasive capacity induced by bevacizumab therapy was associated with upregulation of δ-catenin expression in invasive tumor cells. This finding suggests that δ-catenin is related to tumor invasion and migration.</p></div>

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.