Abstract

<div>Abstract<p>Cancer-associated fibroblasts (CAF) stimulate tumor growth and metastasis. Signals supporting CAF function are thus emerging as candidate therapeutic targets in the tumor microenvironment. The chemokine CXCL14 is a potent inducer of CAF protumorigenic functions. This study is aimed at learning how the protumoral functions of CXCL14-expressing CAF are maintained. We found that the nitric oxide synthase NOS1 is upregulated in CXCL14-expressing CAF and in fibroblasts stimulated with CXCL14. Induction of Nos1 was associated with oxidative stress and occurred together with activation of NRF2 and HIF1α signaling in CXCL14-expressing CAF. Genetic or pharmacologic inhibition of NOS1 reduced the growth of CXCL14-expressing fibroblasts along with their ability to promote tumor formation following coinjection with prostate or breast cancer cells. Tumor analysis revealed reduced macrophage infiltration, with NOS1 downregulation in CXCL14-expressing CAF and lymphangiogenesis as a novel component of CXCL14-promoted tumor growth. Collectively, our findings defined key components of a signaling network that maintains the protumoral functions of CXCL14-stimulated CAF, and they identified NOS1 as intervention target for CAF-directed cancer therapy. <i>Cancer Res; 74(11); 2999–3010. ©2014 AACR</i>.</p></div>

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call