Abstract

<div>Abstract<p>Although cancer vaccines are in the clinic, several issues remain to be addressed to increase vaccine efficacy. In particular, whether how and how frequently a patient should be boosted remains to be defined. Here, we have assessed the ability of dendritic cell (DC)-based vaccines to induce a long-lasting tumor-specific CTL response in either prophylactic or therapeutic settings by taking advantage of transplantable and spontaneous mouse tumor models. Implementing a 24-hour <i>ex vivo</i> intracellular cytokine production assay, we have found that priming with a DC-based vaccine induced a long-lasting CTL response in wild-type mice, and homologous boosting better sustained the pool of central memory T cells, which associated with potent protection against B16F1 melanoma challenge. Appropriate timing of booster vaccination was also critical, as a tight boosting schedule hindered persistence of IFN-γ–competent memory CD8<sup>+</sup> T cells and mice survival in prophylactic settings. Conversely, prime/boost vaccination proved to be of no advantage or even detrimental in therapeutic settings in B16F1 and transgenic adenocarcinoma of the mouse prostate (TRAMP) models, respectively. Although DC priming was indeed needed for tumor shrinkage, restoration of immune competence, and prolonged survival of TRAMP mice, repeated boosting did not sustain the pool of central memory CTLs and was detrimental for mice overall survival. Thus, our results indicate that booster vaccinations impact antitumor immunity to different extents, depending on their prophylactic or therapeutic administration, and suggest evaluating the need for boosting in any given patient with cancer depending on the state of the disease. <i>Cancer Res; 73(12); 3545–54. ©2013 AACR</i>.</p></div>

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.