Abstract
<div>Abstract<p><b>Purpose:</b> Bevacizumab targets VEGF-A and has proved beneficial in glioma patients, improving clinical symptoms by the reduction of tumor edema. However, it remains controversial whether or not bevacizumab exerts antitumor effects in addition to (and potentially independent of) its effects on tumor vessels, and it is unknown what doses are needed to achieve this.</p><p><b>Experimental Design:</b> We established a novel orthotopic glioma mouse model that allowed us to simultaneously study the kinetics of the morphologic and functional vascular changes, tumor growth, and the viability of individual tumor cells during the course of anti-VEGF therapy in the same microscopic tumor region in real-time. Three doses of bevacizumab were compared, a subclinical dose and two clinical doses (medium and high).</p><p><b>Results:</b> Low (subclinical) doses of bevacizumab led to a significant reduction of the total vascular volume without affecting tumor cell viability or the overall tumor growth rates. Medium and high doses triggered a similar degree of vascular regression but significantly decreased tumor growth and prolonged survival. Remaining vessels revealed morphologic features of vascular normalization, reduced permeability, and an increase in blood flow velocity; the latter was dose dependent. We observed an uncoupling of the antitumoral and the antivascular effects of bevacizumab with the high dose only, which showed the potential to cause microregional glioma cell regression. In some tumor regions, pronounced glioma cell regression occurred even without vascular regression. <i>In vitro</i>, there was no effect of bevacizumab on glioma cell proliferation.</p><p><b>Conclusions:</b> Regression of glioma cells can occur independently from vascular regression, suggesting that high doses of bevacizumab have indirect anticancer cell properties <i>in vivo</i>. <i>Clin Cancer Res; 17(19); 6192–205. ©2011 AACR</i>.</p></div>
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.