Abstract

<div>Abstract<p><b>Purpose:</b> KRAS mutations confer adverse prognosis to colorectal cancer, and no targeted therapies have shown efficacy in this patient subset. Paracrine, nongenetic events induced by KRAS-mutant tumor cells are expected to result in specific deregulation and/or relocation of tumor microenvironment (TME) proteins, which in principle can be exploited as alternative therapeutic targets.</p><p><b>Experimental Design:</b> A multimodal strategy combining <i>ex vivo</i>/<i>in vitro</i> phage display screens with deep-sequencing and bioinformatics was applied to uncover TME-specific targets in KRAS-mutant hepatic metastasis from colorectal cancer. Expression and localization of BCAM and LAMA5 were validated by immunohistochemistry in preclinical models of human hepatic metastasis and in a panel of human specimens (<i>n</i> = 71). The antimetastatic efficacy of two BCAM-mimic peptides was evaluated in mouse models. The role of BCAM in the interaction of KRAS-mutant colorectal cancer cells with TME cells was investigated by adhesion assays.</p><p><b>Results:</b> BCAM and LAMA5 were identified as molecular targets within both tumor cells and TME of KRAS-mutant hepatic metastasis from colorectal cancer, where they were specifically overexpressed. Two BCAM-mimic peptides inhibited KRAS-mutant hepatic metastasis in preclinical models. Genetic suppression and biochemical inhibition of either BCAM or LAMA5 impaired adhesion of KRAS-mutant colorectal cancer cells specifically to endothelial cells, whereas adhesion to pericytes and hepatocytes was unaffected.</p><p><b>Conclusions:</b> These data show that the BCAM/LAMA5 system plays a functional role in the metastatic spreading of KRAS-mutant colorectal cancer by mediating tumor–TME interactions and as such represents a valuable therapeutic candidate for this large, currently untreatable patient group. <i>Clin Cancer Res; 22(19); 4923–33. ©2016 AACR</i>.</p></div>

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.