Abstract

<div>Abstract<p>The protein tyrosine phosphatase SHP2 binds to phosphorylated signaling motifs on regulatory immunoreceptors including PD-1, but its functional role in tumor immunity is unclear. Using preclinical models, we show that RMC-4550, an allosteric inhibitor of SHP2, induces antitumor immunity, with effects equivalent to or greater than those resulting from checkpoint blockade. In the tumor microenvironment, inhibition of SHP2 modulated T-cell infiltrates similar to checkpoint blockade. In addition, RMC-4550 drove direct, selective depletion of protumorigenic M2 macrophages via attenuation of CSF1 receptor signaling and increased M1 macrophages via a mechanism independent of CD8<sup>+</sup> T cells or IFNγ. These dramatic shifts in polarized macrophage populations in favor of antitumor immunity were not seen with checkpoint blockade. Consistent with a pleiotropic mechanism of action, RMC-4550 in combination with either checkpoint or CSF1R blockade caused additive antitumor activity with complete tumor regressions in some mice; tumors intrinsically sensitive to SHP2 inhibition or checkpoint blockade were particularly susceptible. Our preclinical findings demonstrate that SHP2 thus plays a multifaceted role in inducing immune suppression in the tumor microenvironment, through both targeted inhibition of RAS pathway–dependent tumor growth and liberation of antitumor immune responses. Furthermore, these data suggest that inhibition of SHP2 is a promising investigational therapeutic approach.</p>Significance:<p>Inhibition of SHP2 causes direct and selective depletion of protumorigenic M2 macrophages and promotes antitumor immunity, highlighting an investigational therapeutic approach for some RAS pathway–driven cancers.</p></div>

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call