Abstract
<div>Abstract<p>Treatment of advanced prostate cancer with androgen deprivation therapy inevitably renders the tumors castration-resistant and incurable. Under these conditions, neuroendocrine differentiation of prostate cancer (CaP) cells is often detected and neuropeptides released by these cells may facilitate the development of androgen independence. Exemplified by gastrin-releasing peptide (GRP), these neuropeptides transmit their signals through G protein–coupled receptors, which are often overexpressed in prostate cancer, and aberrantly activate androgen receptor (AR) in the absence of androgen. We developed an autocrine neuropeptide model by overexpressing GRP in LNCaP cells and the resultant cell line, LNCaP-GRP, exhibited androgen-independent growth with enhanced motility <i>in vitro</i>. When orthotopically implanted in castrated nude mice, LNCaP-GRP produced aggressive tumors, which express GRP, prostate-specific antigen, and nuclear-localized AR. Chromatin immunoprecipitation studies of LNCaP-GRP clones suggest that GRP activates and recruits AR to the cognate promoter in the absence of androgen. A Src family kinase (SFK) inhibitor, AZD0530, inhibits androgen-independent growth and migration of the GRP-expressing cell lines, and blocks the nuclear translocation of AR, indicating the involvement of SFK in the aberrant activation of AR and demonstrating the potential use of SFK inhibitor in the treatment of castration-resistant CaP. <i>In vivo</i> studies have shown that AZD0530 profoundly inhibits tumor metastasis in severe combined immunodeficient mice implanted with GRP-autocrine LNCaP cells. This xenograft model shows autocrine, neuropeptide- and Src kinase–mediated progression of androgen-independent CaP postcastration, and is potentially useful for testing novel therapeutic agents. [Cancer Res 2009;69(1):151–60]</p></div>
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.