Abstract
<div>Abstract<p>Cell cycle deregulation is central to the initiation and fatality of multiple myeloma, the second most common hematopoietic cancer, although impaired apoptosis plays a critical role in the accumulation of myeloma cells in the bone marrow. The mechanism for intermittent, unrestrained proliferation of myeloma cells is unknown, but mutually exclusive activation of cyclin-dependent kinase 4 (Cdk4)-cyclin D1 or Cdk6-cyclin D2 precedes proliferation of bone marrow myeloma cells <i>in vivo</i>. Here, we show that by specific inhibition of Cdk4/6, the orally active small-molecule PD 0332991 potently induces G<sub>1</sub> arrest in primary bone marrow myeloma cells <i>ex vivo</i> and prevents tumor growth in disseminated human myeloma xenografts. PD 0332991 inhibits Cdk4/6 proportional to the cycling status of the cells independent of cellular transformation and acts in concert with the physiologic Cdk4/6 inhibitor p18<sup>INK4c</sup>. Inhibition of Cdk4/6 by PD 0332991 is not accompanied by induction of apoptosis. However, when used in combination with a second agent, such as dexamethasone, PD 0332991 markedly enhances the killing of myeloma cells by dexamethasone. PD 0332991, therefore, represents the first promising and specific inhibitor for therapeutic targeting of Cdk4/6 in multiple myeloma and possibly other B-cell cancers. (Cancer Res 2006; 66(15): 7661-7)</p></div>
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.