Abstract

We introduce rugged fitness landscapes called match landscapes for the co- evolution of feature-based assortative interactions between P ≥ 2 cognate pairs of tRNAs and aminoacyl-tRNA synthetases (aaRSs) in aaRS-tRNA interaction networks. Our genotype phenotype-fitness maps assume additive feature-matching energies, a macroscopic theory of aminoacylation kinetics including proofreading, and selection for translational accuracy in multiple, perfectly encoded site-types. We compute the stationary genotype distributions of finite panmictic, asexual populations of haploid aaRs-tRNA interaction networks evolving under mutation, genetic drift, and selection for cognate matching and non-cognate mismatching of aaRS-tRNA pairs. We compared expected genotype frequencies under different matching rules and fitness functions, both with and without linked site-specific modifiers of interaction. Under selection for translational accuracy alone, our model predicts no selection on modifiers to eliminate non-cognate interactions, so long as they are compensated by tighter cognate interactions. Only under combined selection for both translational accuracy and rate do modifiers adaptively eliminate cross-matching in non-cognate aaRS/tRNA pairs. We theorize that the encoding of macromolecular interaction networks is a genetic language that symbolically maps identifying structural and dynamic features of genes and gene-products to functions within cells. Our theory helps explain 1) the remarkable divergence in how aaRSs bind tRNAs, 2) why interaction-informative features are phylogenetically informative, 3) why the Statistical Tree of Life became more tree-like after the Darwinian Transition, and 4) an approach towards computing the probability of the random origin of an interaction network.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.