Abstract
Coarse Grain Reconfigurable Architectures (CGRA) support spatial and temporal computation to speedup execution and reduce reconfiguration time. Thus compilation involves partitioning instructions spatially and scheduling them temporally. The task of partitioning is governed by the opposing forces of being able to expose as much parallelism as possible and reducing communication time. We extend Edge-Betweenness Centrality scheme, originally used for detecting community structures in social and biological networks, for partitioning instructions of a dataflow graph. We also implement several other partitioning algorithms from literature and compare the execution time obtained by each of these partitioning algorithms on a CGRA called REDEFINE. Centrality based partitioning scheme outperforms several other schemes with 6-20% execution time speedup for various Cryptographic kernels. REDEFINE using centrality based partitioning performs 9× better than a General Purpose Processor, as opposed to 7.76× better without using centrality based partitioning. Similarly, centrality improves the execution time comparison of AES-128 Decryption from 11× to 13.2×.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: IPSJ Transactions on System LSI Design Methodology
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.