Abstract

Polycyclic aromatic hydrocarbons (PAHs) are typical and ubiquitous organic pollutants. Vapor pressures, which can be classified as solid vapor pressure (P S) and (subcooled) liquid vapor pressure (P L), are key physicochemical properties governing the environmental fate of organic pollutants. It is of great importance to develop predictive models of vapor pressures. In the present study, partial least squares (PLS) regression together with 15 theoretical molecular structural descriptors was used to develop quantitative predictive models for vapor pressures of PAHs at different temperatures. Two procedures were adopted to develop the optimal predictive models by eliminating redundant molecular structural descriptors. The cross-validated values for the obtained models have been found higher than 0.975, indicating good predictive ability and robustness of the models. It has been shown that the intermolecular dispersive interactions played a leading role in governing the values of log P L. In addition to dispersive interactions, dipole–dipole interactions also played a secondary role in determining the magnitude of log P S. In view of the scarceness of chemical standards for some PAHs, the difficulty in experimental determinations, and the high cost involved in experimental determinations, the obtained models should serve as a fast and simple first approximation of the vapor pressure values for PAHs at different environmental temperatures.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.