Abstract
Culverts are stormwater structures that require ongoing condition assessment and proactive maintenance for optimal performance to reduce flooding, especially in urban areas. Managing these structures can be complex and costly regarding time, money, and personnel resources. Machine learning (ML) tools are a powerful means of predicting culvert conditions via learning from their existing data records. However, the data available on such subjects are usually low in quantity and of various qualities; thus, they need significant data processing for ML. Existing stormwater infrastructure condition prediction studies rarely detail their data processing methods. Hence, this work uses a comprehensive case study to illustrate essential data preparation techniques to address common data issues and enhance the performance of commonly used ML algorithms. The study shows methods for exploratory data analysis to understand the dataset, data wrangling methods for preprocessing data of various quality, and data engineering procedures for addressing insufficient data issues. After the data processing procedures are applied, F-1 scores are used to evaluate the ML models' performance. The random forest classifier model, one of the four ML models, performed best after applying the data wrangling and data engineering methods. Overall, this work provides transparency of methods and applications to encourage ML use in the water resources engineering field.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: Engineering Applications of Artificial Intelligence
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.