Abstract

Financial institutions increasingly rely upon data-driven methods for developing fraud detection systems, which are able to automatically detect and block fraudulent transactions. From a machine learning perspective, the task of detecting suspicious transactions is a binary classification problem and therefore many techniques can be applied. Interpretability is however of utmost importance for the management to have confidence in the model and for designing fraud prevention strategies. Moreover, models that enable the fraud experts to understand the underlying reasons why a case is flagged as suspicious will greatly facilitate their job of investigating the suspicious transactions. Therefore, we propose several data engineering techniques to improve the performance of an analytical model while retaining the interpretability property. Our data engineering process is decomposed into several feature and instance engineering steps. We illustrate the improvement in performance of these data engineering steps for popular analytical models on a real payment transactions data set.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.