Abstract

ABSTRACT Motor-skill learning for complex robotic tasks is a challenging problem due to the high task variability. Robotic clothing assistance is one such challenging problem that can greatly improve the quality-of-life for the elderly and disabled. In this study, we propose a data-efficient representation to encode task-specific motor-skills of the robot using Bayesian nonparametric latent variable models. The effectivity of the proposed motor-skill representation is demonstrated in two ways: (1) through a real-time controller that can be used as a tool for learning from demonstration to impart novel skills to the robot and (2) by demonstrating that policy search reinforcement learning in such a task-specific latent space outperforms learning in the high-dimensional joint configuration space of the robot. We implement our proposed framework in a practical setting with a dual-arm robot performing clothing assistance tasks.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call