Abstract

Prognostics and Health Monitoring (PHM) of machinery is a research area with great relevance to industrial applications as it can serve as a foundation for safer, more cost-efficient operation and maintenance. The prediction of Remaining Useful Life (RUL) plays an important part in this field and has seen significant advances from the introduction of machine learning methods. However, these methods typically require model training with a large number of run-to-failure sequences, which are often not feasible to obtain due to the required time and cost investments. The present study addresses this issue by introducing a novel methodology, which first quantifies the deviation from the machine’s health and fault state and then calculates a machine Health Index (HI) prior to the prediction of RUL. In addition, the start of a degradation state is determined. Alternative implementations of the proposed methodology are compared utilising several methods, including Support Vector Regression (SVR), Long Short-Term Memory (LSTM) Neural Network (NN), Mahalanobis Distance (MD), and LSTM Autoencoder (AE) NN. The methodology is applied to the open turbofan degradation (C-MAPSS) and bearing vibration (FEMTO-ST PROGNOSTIA) datasets. When a reduced subset of training sequences is used, the prediction results demonstrate that the proposed methodology largely outperforms the baseline method without HI generation. For example, when comparing prediction errors of the C-MAPSS dataset at a reduction of the available number of training sequences to 5%, the proposed method shows an average prediction improvement by 6.5% - 19.2% relative to the baseline method. The presented approach is therefore suitable to improve model generalisation for cases with a limited number of training sequences. When the full training set is utilised, the most resource-saving variant of the proposed approach achieves an average training duration of 8.9% compared to the baseline method. Hence, an additional contribution of the presented data-efficient approach is the reduction of required computing resources, which has implications on training time, energy consumption, and environmental impact.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call