Abstract
One-class classification (OCC) is discussed in the framework of the measurement and processing of multiway data. Data-driven soft independent modeling of class analogy (DD-SIMCA) is applied in the following formats: (1) multiblock and (2) Tucker 3 N-way SIMCA, which are shown to be useful tools for solving classification tasks. A new decision rule for N-way DD-SIMCA is adopted based on the conventional two-way DD-SIMCA model. Multiblock SIMCA is shown to be useful for variable selection, and Tucker 3 SIMCA to select the optimal model complexity when applying multiway data decomposition and to assess the role of individual samples in the classification model. Both approaches, together with the two-way DD-SIMCA version applied to the unfolded data, are compared regarding the analysis of an experimental data set including genuine and adulterated blueberry extract samples. The latter were employed to produce matrix spectral-time data matrices per sample within a flow injection system, taking advantage of the spectral changes in the sample constituents as a function of the pH of the carrier phase. The need to employ the Tucker 3 model instead of a trilinear decomposition is supported by a discussion on the lack of the trilinearity property of the studied data.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.