Abstract

<abstract><p>This paper studies the problem of facility location in a hybrid uncertain environment with both randomness and fuzziness. We establish a data-driven two-stage fuzzy random mixed integer optimization model, by considering the uncertainty of transportation cost and customer demand. Given the complexity of the model, this paper based on particle swarm optimization (PSO), beetle antenna search algorithm (BAS) and interior point algorithm, a hybrid intelligent algorithm (HIA) is proposed to solve two-stage fuzzy random mixed integer optimization model, yielding the optimal facility location and maximal expected return of supply chain simultaneously. Finally, taking the supply chain of medical mask in Shanghai as an example, the influence of uncertainty on the location of processing factory was studied. We compare the HIA with hybrid PSO and hybrid genetic algorithm (GA), to validate the proposed algorithm based on the computational time and the convergence rate.</p></abstract>

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.